
Django Natural Language Filter

Hodossy, Szabolcs

Jan 21, 2021

USER GUIDE

1 Installation 3

2 Rest framework integration 5
2.1 Language Reference . 5
2.2 Customization . 9
2.3 Configuration . 10
2.4 Get the source code . 11
2.5 Setup . 12
2.6 Improving the language . 12
2.7 Focus points . 13

3 Indices and tables 15

Python Module Index 17

Index 19

i

ii

Django Natural Language Filter

The goal of Django NLF is to provide a simple and easy way to express complex filtering criteria. This natural
language approach enables building nested complex queries quickly for your users, which are otherwise cumbersome
with other libraries.

It provides an intuitive way to start with simpler criteria, but tries not to get in the way of more advanced use cases
that need regular expressions, annotations or aggregations etc.

Warning: This project is still in development, please use with this in mind!

USER GUIDE 1

Django Natural Language Filter

2 USER GUIDE

CHAPTER

ONE

INSTALLATION

Install using pip,

$ pip install django-nlf

And add django_nlf to your INSTALLED_APPS.

INSTALLED_APPS = [
...
"django_nlf",

]

Then you can use the DjangoNLFilter with a queryset and a string, containing the filter expression. Please see
the Language Reference for more details.

1 from django_nlf.filters import DjangoNLFilter
2 from .models import Article
3

4 nl_filter = DjangoNLFilter()
5 qs = Article.objects.all()
6 q = "author.username is john or title ~ news"
7 # equivalent to Article.objects.filter(Q(author__username="user") | Q(title__

→˓icontains="news"))
8 articles = nl_filter.filter(qs, q)
9

10 # Nested logical operators are also supported:
11 q = "author.username is john and (title ~ news or created_at <= 2020-06-05)"
12 # equivalent to
13 # Article.objects.filter(
14 # Q(author__username="user") & (Q(title__icontains="news") | Q(created_at__lte=

→˓"2020-06-05"))
15 #)
16 articles = nl_filter.filter(qs, q)

3

Django Natural Language Filter

4 Chapter 1. Installation

CHAPTER

TWO

REST FRAMEWORK INTEGRATION

You just need to simply add the natural language filter backend to your filter backends list.

REST_FRAMEWORK = {
"DEFAULT_FILTER_BACKENDS": (
...
"django_nlf.rest_framework.DjangoNLFilterBackend",

),
}

2.1 Language Reference

Warning: This project is in development, please expect changes in the language syntax!

Warning: Only the a-z, A-Z, 0-9, ‘.’, ‘_’, ‘-‘, ‘/’, ‘:’ characters are supported by the language right now.

2.1.1 Terminology

The whole natural language expression, as a string, is referred to as filter expression. The atomic building blocks of
the language are the expressions which can be composed via operators and grouped together to articulate the filtering
criteria.

The most simple expression is of the following form:

#<field name> <lookup> <value>
"title contains science"

Note: As a convenience, an expression targeting a boolean field can take the following form: "is
archived" or negated as "is not archived", where the last part is the field name.

5

Django Natural Language Filter

Fields

All fields are available for a given model, including relationships as well. You can follow each path with the path
separator, by default it looks like

"author.username contains john"

Values

Values can be anything, but if you need whitespace in it, you must quote the value. For some lookups, a list of values
can be defined as well. List of values are defined as a coma separated list within parenthesis. Regular expressions can
be defined between two forward slashes.

'title contains "science news"'
"author.username is in (john, jane)"
"payment_details matches /[\d]{4}(-[\d]{4}){3}/"

Complicating things

These expressions can then be combined in any way with logical operators. The precedence of the operators are
respected, i.e. and has higher precedence over or.

"title contains science and published > 2020-01-01"

You can group these expressions as well:

"title contains science and (author is john or published > 2020-01-01)"

Note: You can nest these groups as you like.

Advanced Use

To express the most complicated filtering criteria, functions can be used in the language as a field, a value or an
expression. On how to develop such functions, see the Writing your own function Guide.

For example if we have an articles table for a science site, we could do the following, where
hasBeenPeerReviewed() hides a nasty join detail to check if a submitted paper has already been reviewed.

Some functions are available by default. More info on the Available functions

q1 = "author is john and hasBeenPeerReviewed()"
q2 = "published > startOfYear()"

6 Chapter 2. Rest framework integration

Django Natural Language Filter

See Also

Supported Lookups

Note: The lookups are all case insensitive.

Equals

Can be expressed as is, equals or =, and means a case insensitive equality check. Can be negated as is not,
do(es) not equal or != respectively.

Contains

Can be expressed as contains, and means a case insensitive check. Can be negated as do(es) not contain.

Regex

Can be expressed as matches, and means a case insensitive regular expression match. Can be negated as do(es)
not match.

In

Can be expressed as in, and means a case sensitive equality check against the given list of values. Can be negated as
not in.

Greater than (or equal)

Can be expressed as > and >=, and means a comparison against the given value.

Lower than (or equal)

Can be expressed as < and <=, and means a comparison against the given value.

Note: Custom lookups are not supported currently.

2.1. Language Reference 7

Django Natural Language Filter

Supported Operators

Note: The operators are all case insensitive.

And

Can be expressed as and.

Or

Can be expressed as or.

Not

Can be expressed as not in front of functions and group of expressions. Expressions can be negated by negating the
lookup (e.g. is -> is not).

Groups

Expressions can be grouped by parenthesis: (,).

Available Functions

Functions can be used in three ways: as a field, a value or a whole expression.

Date functions

Default date functions

django_nlf.functions.dates.start_of_month(*args, **kwargs)
Determines the first day of the current month. Time is set to 00:00:00.

Returns A datetime object set to 00:00 on the first day of the current month.

Return type datetime

django_nlf.functions.dates.start_of_week(*args, **kwargs)
Determines the first day of the the current week based on l10n settings. Time is set to 00:00:00.

Returns A datetime object set to 00:00 on the first day of the current week.

Return type datetime

django_nlf.functions.dates.start_of_year(*args, **kwargs)
Determines the first day of the current year. Time is set to 00:00:00.

Returns A datetime object set to 00:00 on the first day of the current year.

Return type datetime

8 Chapter 2. Rest framework integration

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime

Django Natural Language Filter

2.2 Customization

2.2.1 Converting field names

You may not like the snake case convention widely used in Python to be used in the filtering expressions your user
write. Therefore you can use one of the built in case coverters or write your own.

Built in converters

django_nlf.utils.camel_to_snake_case(value: str)→ str
Converts strings in camelCase to snake_case.

Parameters value (str) – camalCase value.

Returns snake_case value.

Return type str

Custom converter

To support automatic case conversion, a custom implementation can be provided.

app/utils.py
def my_converter(field_name: str) -> str:

do something with field_name
return field_name

and in settings.py:

NLF_FIELD_NAME_CONVERTER = "app.utils.my_converter"

2.2.2 Writing your own function

To create your own custom function, you just need to register it. The first argument to nlf_functionwill determine
how the function can be referenced in filter expressions, the role parameters determines where the function can be used,
while the model parameter can be used to restrict usability to certain models.

See the following example:

from django_nlf.functions import nlf_function

@nlf_function("myFunction")
def my_function(*args, **kwargs):
pass

The arguments are passed as strings as positional arguments, only quotes are removed. Additional context is available
through key word arguments.

Currently the Model class being filtered, the Request and the View are passed as model, request and view
respectively.

2.2. Customization 9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://docs.djangoproject.com/en/dev/ref/models/instances/#django.db.models.Model

Django Natural Language Filter

Value functions

If the function is used as a value, it can return anything appropriate for the field.

Field functions

If the function is used as a field, it must return a dictionary with a single key, the field name, and an annotation. This
can be an F object, Aggragation, Subquery or even a Window.

Warning: Annotations are applied BEFORE all other filtering is done, therefore if you need to filter on a group,
that must be handled as an expression function with a Subquery.

Expression functions

Expression functions are passed an additional keyword argument exclude to specify if the function has been negated
(exclude=True) or not (exclude=False). It must return a tuple of a dictionary holding annotations as for field
functions and a Q object.

Warning: Annotations are applied BEFORE all other filtering is done, therefore if you need to filter on a group,
that must be handled as an expression function with a Subquery.

2.3 Configuration

Here is a list of all available settings of django-nlf and their default values. All settings are prefixed with NLF_.

2.3.1 NLF_EMPTY_VALUE

Default: "EMPTY"

The string that is translated to a lookup with the NULL database value.

2.3.2 NLF_FALSE_VALUES

Default: ("0", "f")

Used in boolean coercion to determine the boolean value of a string. If the first character of the value coerced to
boolean matches any listed character, the value is considered False, otherwise True.

10 Chapter 2. Rest framework integration

http://docs.djangoproject.com/en/dev/ref/models/expressions/#django.db.models.F
http://docs.djangoproject.com/en/dev/ref/models/expressions/#django.db.models.Aggregate
http://docs.djangoproject.com/en/dev/ref/models/expressions/#django.db.models.Subquery
http://docs.djangoproject.com/en/dev/ref/models/expressions/#django.db.models.Subquery
http://docs.djangoproject.com/en/dev/ref/models/querysets/#django.db.models.Q
http://docs.djangoproject.com/en/dev/ref/models/expressions/#django.db.models.Subquery

Django Natural Language Filter

2.3.3 NLF_FIELD_NAME_CONVERTER

Default: None

A function or an import path to a function that applies a conversion to the field name. Can be used to automatically
convert between cases, e.g. camelCase to snake_case.

One such converter function is readily available as django_nlf.utils.camel_to_snake_case.

2.3.4 NLF_FIELD_SHORTCUTS

Default: {}

A simple mapping of models and field name shortcuts to full field path. The key must be a model identifier in a form
of app.Model and its value is mapping of shortcut to full path. The special key __all__ applies to all models,
and has a lower precedence. For example if you would like to identify you users by their username in the language for
your model Article, and you have an author field on your model (pointing to the Primary Key of the users), you
can do the following:

NLF_FIELD_SHORTCUTS = {
"blog.Article": {"author": "author.username"}, # Do this for shortcuts for a

→˓specific model
"__all__": {} # Do this for generic shortcuts,

→˓applicable to all models
}

2.3.5 NLF_PATH_SEPARATOR

Default: "."

The character that separates path elements for fields. Used when applying filter following Foreign Key or Many-to-
Many relations.

2.3.6 NLF_QUERY_PARAM

Default: "q"

This applies to the Django RESTFramework Backend. This parameter is used for extracting the filter expression from
the GET query parameters.

2.4 Get the source code

Please first fork the repository, then clone it. Every Pull Request is more than welcome!

Note: The following assumes that you have git, Python 3.7+, virtualenv and optionally make installed.

2.4. Get the source code 11

Django Natural Language Filter

2.5 Setup

It is advised to develop a project in a virtual environment.

$ python -m virtualenv venv

All development dependencies are listed in dev_requirements.txt.

$ pip install -r dev_requirements.txt

A Makefile is available with the most common operations that are needed during development. The following
targets are available:

• make lint: Runs black in check mode and pylint

• make format: Runs black and formats each file

• make test: Runs the test suite

• make coverage: Runs the test suite and measures coverage

• make docs: Builds the documentation

• make publish: Builds and publishes the package. Should not be used, the same happens for tag creation as
a Github Action.

• make lang: Builds the language with a listener. See below for further information.

If you are not familiar with GNU Make, use that file as reference on how to perform each operation.

2.6 Improving the language

When changing the grammar file, the whole runtime should be re-generated by running make lang. That however
overwrites some files and introduces a lot of pylint messages. It also generates a new django_nlf/antlr/
generated/DjangoNLFListener.py file. There are several things that should be done (currently manually,
but any automation is greatly appreciated here):

• If there were a new parser rule added, the corresponding enter* and exit* functions must be implemented
in django_nlf/antlr/listener.py. After that the generated file can be safely deleted.

• The introduces errors should be corrected, which most of the cases can be simply done by reseting the appro-
priate changes in the files, namely:

– reset the changes made to the import section of the generated *.py files

– remove unnecessary pass statements

– remove else: after return cases

– reformat some while and if conditions according to pylint suggestions

The test suite then can verify if old functionality has been kept intact.

12 Chapter 2. Rest framework integration

https://black.readthedocs.io/en/stable/
http://pylint.pycqa.org/
https://black.readthedocs.io/en/stable/

Django Natural Language Filter

2.7 Focus points

2.7.1 Functions

Functions are now an experimental feature, and needs a hell lot more testing, and feedback from real life usage. Any
reported issue or feature idea is greatly appreciated.

2.7.2 Autocomplete

The biggest bottleneck for quickly introducing the language for your end users is the lack of Autocomplete function-
ality for the form fields. Any idea on how the supporting APIs should look and how the JS implementation should
work is greatly appreciated.

2.7.3 Language housekeeping

The language was developed with no prior language engineering experience, so probably a lot of rationalizations and
refactors can be made.

2.7.4 MyPy integration

Typing support is better with every release, but mypy integration is still missing.

2.7. Focus points 13

Django Natural Language Filter

14 Chapter 2. Rest framework integration

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

15

Django Natural Language Filter

16 Chapter 3. Indices and tables

PYTHON MODULE INDEX

d
django_nlf.functions.dates, 8

17

Django Natural Language Filter

18 Python Module Index

INDEX

C
camel_to_snake_case() (in module

django_nlf.utils), 9

D
django_nlf.functions.dates

module, 8

M
module

django_nlf.functions.dates, 8

S
start_of_month() (in module

django_nlf.functions.dates), 8
start_of_week() (in module

django_nlf.functions.dates), 8
start_of_year() (in module

django_nlf.functions.dates), 8

19

	Installation
	Rest framework integration
	Language Reference
	Customization
	Configuration
	Get the source code
	Setup
	Improving the language
	Focus points

	Indices and tables
	Python Module Index
	Index

